skip to main content


Search for: All records

Creators/Authors contains: "Becker, George"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Observed scatter in the Lyαopacity of quasar sightlines atz< 6 has motivated measurements of the correlation between Lyαopacity and galaxy density, as models that predict this scatter make strong and sometimes opposite predictions for how they should be related. Our previous work associated two highly opaque Lyαtroughs atz∼ 5.7 with a deficit of Lyαemitting galaxies (LAEs). In this work, we survey two of the most highly transmissive lines of sight at this redshift toward thez= 6.02 quasar SDSS J1306+0356 and thez= 6.17 quasar PSO J359-06. We find that both fields are underdense in LAEs within 10h−1Mpc of the quasar sightline, somewhat less extensive than underdensities associated with Lyαtroughs. We combine our observations with three additional fields from the literature and find that while fields with extreme opacities are generally underdense, moderate opacities span a wider density range. The results at high opacities are consistent with models that invoke UV background fluctuations and/or late reionization to explain the observed scatter in intergalactic medium (IGM) Lyαopacities. There is tension at low opacities, however, as the models tend to associate lower IGM Lyαopacities with higher densities. Although the number of fields surveyed is still small, the low-opacity results may support a scenario in which the ionizing background in low-density regions increases more rapidly than some models suggest after becoming ionized. Elevated gas temperatures from recent reionization may also be making these regions more transparent.

     
    more » « less
  2. Abstract The first stars were born from chemically pristine gas. They were likely massive, and thus they rapidly exploded as supernovae, enriching the surrounding gas with the first heavy elements. In the Local Group, the chemical signatures of the first stellar population were identified among low-mass, long-lived, very metal-poor ([Fe/H] < −2) stars, characterized by high abundances of carbon over iron ([C/Fe] > +0.7): the so-called carbon-enhanced metal-poor stars. Conversely, a similar carbon excess caused by first-star pollution was not found in dense neutral gas traced by absorption systems at different cosmic time. Here we present the detection of 14 very metal-poor, optically thick absorbers at redshift z ∼ 3–4. Among these, 3 are carbon-enhanced and reveal an overabundance with respect to Fe of all the analyzed chemical elements (O, Mg, Al, and Si). Their relative abundances show a distribution with respect to [Fe/H] that is in very good agreement with those observed in nearby very metal-poor stars. All the tests we performed support the idea that these C-rich absorbers preserve the chemical yields of the first stars. Our new findings suggest that the first-star signatures can survive in optically thick but relatively diffuse absorbers, which are not sufficiently dense to sustain star formation and hence are not dominated by the chemical products of normal stars. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  3. Abstract Luminous quasars are powerful targets to investigate the role of feedback from supermassive black holes (BHs) in regulating the growth phases of BHs themselves and of their host galaxies, up to the highest redshifts. Here we investigate the cosmic evolution of the occurrence and kinematics of BH-driven outflows, as traced by broad absorption line (BAL) features, due to the C iv ionic transition. We exploit a sample of 1935 quasars at z = 2.1–6.6 with bolometric luminosity log( L bol /erg s −1 ) ≳ 46.5, drawn from the Sloan Digital Sky Survey and from the X-Shooter legacy survey of Quasars at the Reionization Epoch (XQR-30). We consider rest-frame optical bright quasars to minimize observational biases due to quasar selection criteria. We apply a homogeneous BAL-identification analysis, based on employing composite template spectra to estimate the quasar intrinsic emission. We find a BAL quasar fraction close to 20% at z ∼ 2–4, while it increases to almost 50% at z ∼ 6. The velocity and width of the BAL features also increase at z ≳ 4.5. We exclude the possibility that the redshift evolution of the BAL properties is due to differences in terms of quasar luminosity and accretion rate. These results suggest significant BH feedback occurring in the 1 Gyr old universe, likely affecting the growth of BHs and, possibly, of their host galaxies, as supported by models of early BH and galaxy evolution. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. ABSTRACT

    We measure the mean free path ($\lambda _{\rm mfp,H\, \small {I}}$), photoionization rate ($\langle \Gamma _{\rm H\, \small {I}} \rangle$), and neutral fraction ($\langle f_{\rm H\, \small {I}} \rangle$) of hydrogen in 12 redshift bins at 4.85 < z < 6.05 from a large sample of moderate resolution XShooter and ESI QSO absorption spectra. The fluctuations in ionizing radiation field are modelled by post-processing simulations from the Sherwood suite using our new code ‘EXtended reionization based on the Code for Ionization and Temperature Evolution’ (ex-cite). ex-cite uses efficient Octree summation for computing intergalactic medium attenuation and can generate large number of high resolution $\Gamma _{\rm H\, \small {I}}$ fluctuation models. Our simulation with ex-cite shows remarkable agreement with simulations performed with the radiative transfer code Aton and can recover the simulated parameters within 1σ uncertainty. We measure the three parameters by forward-modelling the  Lyα forest and comparing the effective optical depth ($\tau _{\rm eff, H\, \small {I}}$) distribution in simulations and observations. The final uncertainties in our measured parameters account for the uncertainties due to thermal parameters, modelling parameters, observational systematics, and cosmic variance. Our best-fitting parameters show significant evolution with redshift such that $\lambda _{\rm mfp,H\, \small {I}}$ and $\langle f_{\rm H\, \small {I}} \rangle$ decreases and increases by a factor ∼6 and ∼104, respectively from z ∼ 5 to z ∼ 6. By comparing our $\lambda _{\rm mfp,H\, \small {I}}$, $\langle \Gamma _{\rm H\, \small {I}} \rangle$ and $\langle f_{\rm H\, \small {I}} \rangle$ evolution with that in state-of-the-art Aton radiative transfer simulations and the Thesan and CoDa-III simulations, we find that our best-fitting parameter evolution is consistent with a model in which reionization completes by z ∼ 5.2. Our best-fitting model that matches the $\tau _{\rm eff, H\, \small {I}}$ distribution also reproduces the dark gap length distribution and transmission spike height distribution suggesting robustness and accuracy of our measured parameters.

     
    more » « less
  5. ABSTRACT

    Proximity zones of high-redshift quasars are unique probes of their central supermassive black holes as well as the intergalactic medium (IGM) in the last stages of reionization. We present 22 new measurements of proximity zones of quasars with redshifts between 5.8 and 6.6, using the enlarged XQR-30 sample of high-resolution, high-SNR quasar spectra. The quasars in our sample have ultraviolet magnitudes of M1450 ∼ −27 and black hole masses of 109–1010 M⊙. Our inferred proximity zone sizes are 2–7 physical Mpc, with a typical uncertainty of less than 0.5 physical Mpc, which, for the first time, also includes uncertainty in the quasar continuum. We find that the correlation between proximity zone sizes and the quasar redshift, luminosity, or black hole mass, indicates a large diversity of quasar lifetimes. Two of our proximity zone sizes are exceptionally small. The spectrum of one of these quasars, with z  = 6.02, displays, unusually for this redshift, damping wing absorption without any detectable metal lines, which could potentially originate from the IGM. The other quasar has a high-ionization absorber ∼0.5 pMpc from the edge of the proximity zone. This work increases the number of proximity zone measurements available in the last stages of cosmic reionization to 87. This data will lead to better constraints on quasar lifetimes and obscuration fractions at high redshift, that in turn will help probe the seed mass and formation redshift of supermassive black holes.

     
    more » « less
  6. Abstract

    The mean free path of ionizing photons,λmfp, is a critical parameter for modeling the intergalactic medium (IGM) both during and after reionization. We present direct measurements ofλmfpfrom QSO spectra over the redshift range 5 <z< 6, including the first measurements atz≃ 5.3 and 5.6. Our sample includes data from the XQR-30 VLT large program, as well as new Keck/ESI observations of QSOs nearz∼ 5.5, for which we also acquire new [Cii] 158μm redshifts with ALMA. By measuring the Lyman continuum transmission profile in stacked QSO spectra, we findλmfp=9.331.80+2.06,5.401.40+1.47,3.311.34+2.74, and0.810.48+0.73pMpc atz= 5.08, 5.31, 5.65, and 5.93, respectively. Our results demonstrate thatλmfpincreases steadily and rapidly with time over 5 <z< 6. Notably, we find thatλmfpdeviates significantly from predictions based on a fully ionized and relaxed IGM as late asz= 5.3. By comparing our results to model predictions and indirectλmfpconstraints based on IGM Lyαopacity, we find that the evolution ofλmfpis consistent with scenarios wherein the IGM is still undergoing reionization and/or retains large fluctuations in the ionizing UV background well below redshift 6.

     
    more » « less
  7. ABSTRACT

    We present the Sherwood–Relics simulations, a new suite of large cosmological hydrodynamical simulations aimed at modelling the intergalactic medium (IGM) during and after the cosmic reionization of hydrogen. The suite consists of over 200 simulations that cover a wide range of astrophysical and cosmological parameters. It also includes simulations that use a new lightweight hybrid scheme for treating radiative transfer effects. This scheme follows the spatial variations in the ionizing radiation field, as well as the associated fluctuations in IGM temperature and pressure smoothing. It is computationally much cheaper than full radiation hydrodynamics simulations, and circumvents the difficult task of calibrating a galaxy formation model to observational constraints on cosmic reionization. Using this hybrid technique, we study the spatial fluctuations in IGM properties that are seeded by patchy cosmic reionization. We investigate the relevant physical processes and assess their impact on the z > 4 Lyman-α forest. Our main findings are: (i) consistent with previous studies patchy reionization causes large-scale temperature fluctuations that persist well after the end of reionization, (ii) these increase the Lyman-α forest flux power spectrum on large scales, and (iii) result in a spatially varying pressure smoothing that correlates well with the local reionization redshift. (iv) Structures evaporated or puffed up by photoheating cause notable features in the Lyman-α forest, such as flat-bottom or double-dip absorption profiles.

     
    more » « less
  8. Abstract Detailed analyses of high-redshift galaxies are challenging because these galaxies are faint, but this difficulty can be overcome with gravitational lensing, in which the magnification of the flux enables spectroscopy with a high signal-to-noise ratio (S/N). We present the rest-frame ultraviolet (UV) Keck Echellette Spectrograph and Imager (ESI) spectrum of the newly discovered z = 2.79 lensed galaxy SDSS J1059+4251. With an observed magnitude F814W = 18.8 and a magnification factor μ = 31 ± 3, J1059+4251 is both highly magnified and intrinsically luminous, about two magnitudes brighter than M UV * at z ∼ 2–3. With a stellar mass M * = (3.22 ± 0.20) × 10 10 M ⊙ , star formation rate SFR = 50 ± 7 M ⊙ yr −1 , and stellar metallicity Z * ≃ 0.15–0.5 Z ⊙ , J1059+4251 is typical of bright star-forming galaxies at similar redshifts. Thanks to the high S/N and the spectral resolution of the ESI spectrum, we are able to separate the interstellar and stellar features and derive properties that would be inaccessible without the aid of the lensing. We find evidence of a gas outflow with speeds up to −1000 km s −1 , and of an inflow that is probably due to accreting material seen along a favorable line of sight. We measure relative elemental abundances from the interstellar absorption lines and find that α -capture elements are overabundant compared to iron-peak elements, suggestive of rapid star formation. However, this trend may also be affected by dust depletion. Thanks to the high data quality, our results represent a reliable step forward in the characterization of typical galaxies at early cosmic epochs. 
    more » « less
  9. Abstract Measuring the density of the intergalactic medium using quasar sight lines in the epoch of reionization is challenging due to the saturation of Ly α absorption. Near a luminous quasar, however, the enhanced radiation creates a proximity zone observable in the quasar spectra where the Ly α absorption is not saturated. In this study, we use 10 high-resolution ( R ≳ 10,000) z ∼ 6 quasar spectra from the extended XQR-30 sample to measure the density field in the quasar proximity zones. We find a variety of environments within 3 pMpc distance from the quasars. We compare the observed density cumulative distribution function (CDF) with models from the Cosmic Reionization on Computers simulation and find a good agreement between 1.5 and 3 pMpc from the quasar. This region is far away from the quasar hosts and hence approaching the mean density of the universe, which allows us to use the CDF to set constraints on the cosmological parameter σ 8 = 0.6 ± 0.3. The uncertainty is mainly due to the limited number of high-quality quasar sight lines currently available. Utilizing the more than 200 known quasars at z ≳ 6, this method will allow us to tighten the constraint on σ 8 to the percent level in the future. In the region closer to the quasar within 1.5 pMpc, we find that the density is higher than predicted in the simulation by 1.23 ± 0.17, suggesting that the typical host dark matter halo mass of a bright quasar ( M 1450 < −26.5) at z ∼ 6 is log 10 ( M h / M ⊙ ) = 12.5 − 0.7 + 0.4 . 
    more » « less
  10. null (Ed.)